EQUIPMENT MAINTENANCE AND REPAIR IN LABORATORY SETTING

JIMMY C. SANTOS
To be a “troubleshooter” one must have:

- Knowledge on
 - Tools needed
 - Basic electrical and electronic components
 - Circuit analysis
 - Repair and maintenance procedures
CLIMBING THE LADDER TO BECOME A “TROUBLESHOOTER”
CLIMBING THE LADDER TO BECOME A “TROUBLESHOOTER”
CLIMBING THE LADDER TO BECOME A "TROUBLESHOOTER"
CLIMBING THE LADDER TO BECOME A "TROUBLESHOOTER"
CLIMBING THE LADDER TO BECOME A “TROUBLESHOOTER”
TOOLS NEEDED
TOOLS NEEDED

- MULTIMETERS
- WIRING TOOLS
- SCREWDRIVERS
- MISCELLANEOUS TOOLS
- DO-IT-YOURSELF TOOLS
MULTIMETERS

REQUIRED FEATURES (minimum)
- Can measure up to 50 VDC
- Can measure up to 250 VAC
- Measures Resistance or Continuity

DESIRABLE FEATURES
- Can measure entry level current to approximately 250 milli-ampere
- Can measure DC and AC current up to 10 Amperes
TYPES OF MULTIMETER

1. ANALOG MULTIMETER
 - Advantage: Low Cost
 - Disadvantages: Difficult to read measured value. Need to start at **highest range** and work way down to suitable range.

2. DIGITAL MULTIMETER
 - Advantages: Easy to read measured value. More accurate readings
 - Disadvantages: High Cost. Need to start at **highest range** and work way down to suitable range.
TYPES OF MULTIMETER

3. AUTO-RANGING MULTIMETER

Advantage: Need only to select the function.

Disadvantage: High cost
WIRING TOOLS

WIRE CUTTER — Diagonal/Side Cutter

- 5 or 6 inches overall size
- Plastic or Rubber cushion grip
WIRE STRIPPER AND CUTTER
USE TO STRIP-OFF OR REMOVE INSULATION OF WIRES
ELECTRICAL MASTER SET
Soldering Iron or Soldering Gun

- 30-40 Watts: used in fixing electronic components in circuit boards and splicing wires with small diameters.
- 60-100 Watts: used in fixing large components such as heat sink and transformers in circuit boards, and on for bigger diameter wire splicing.
SCREWDRIVERS

1. Blade/Flat – $\frac{1}{4}''$ to $\frac{3}{8}''$ and must have at least 4” shaft, with plastic or rubber grip.
2. Star/Phillips – must have at least 4” shaft, with plastic or rubber grip.

3. Precision Screwdrivers – use for smaller screw drives.
4. SET OF INSULATED SCREW DRIVERS
MISCELLANEOUS TOOLS

1. PLIERS - use to hold objects such as wires and electronic/electrical components

TYPES

• Long/Needle Nose
• Side Cutting Pliers

• Slip-Joint Pliers
2. **WRENCH** – for electrical and mechanical works

- Open Wrench
- Close Wrench
- Adjustable Wrench
CATHODE RAY OCILLOSCOPE
SIGNAL GENERATOR
BASIC ELECTRICAL AND ELECTRONIC COMPONENTS

• PASSIVE DEVICES – devices or components which do not require external source to their operation.

1. Resistors – a two-terminal passive component that opposes the flow of current (reduces the electric current) and at the same time lowers the voltage levels in a circuit.
2. **Capacitors** – a two-terminal passive component that is used to store energy. It can be used in a circuit as smoothing, coupling and bypass component.
3. **Inductors** – a two-terminal passive component that store energy in the form of magnetic field. It is used in circuit as “choke” and “reactor” in RF receiver and transmitter circuits.
BASIC ELECTRICAL AND ELECTRONIC COMPONENTS

• ACTIVE DEVICES – devices or components which requires external source to their operation.

1. Diodes – a two terminal PN junction device that allows the flow of current only in one direction.

<table>
<thead>
<tr>
<th>TYPE (BASIC)</th>
<th>SYMBOL/PICTURE</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECTIFIER DIODES</td>
<td></td>
<td>Rectifier Circuits of Power Supply Units</td>
</tr>
<tr>
<td>ZENER DIODES</td>
<td></td>
<td>Voltage Regulator in Power Supply Units</td>
</tr>
<tr>
<td>LED – Light Emitting Diode</td>
<td></td>
<td>Calculator Displays, TV, Mobile Phone Displays</td>
</tr>
</tbody>
</table>
2. **Transistor** – a three terminal active component that is used mainly in boosting or amplifying electrical signals; both AF and RF ranges. Other applications of transistor includes

<table>
<thead>
<tr>
<th>TYPE (BASIC)</th>
<th>SYMBOL/PICTURE</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIPOLAR JUNCTION TRANSISTORS (BJT) – current controlled device</td>
<td></td>
<td>Voltage Regulation Audio Frequency Amplification,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIELD EFFECT TRANSISTORS (FET) – voltage controlled device</td>
<td></td>
<td>Audio and Radio Frequency Amplification,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Channel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPONENTS</td>
<td>SYMBOL/PICUTURE</td>
<td>FUNCTION</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>FUSE</td>
<td> </td>
<td>Limit the amount of current that can be drawn by an electric circuit by opening (blowing or melting) when the current exceeds a preset limit.</td>
</tr>
<tr>
<td>BULB</td>
<td> </td>
<td>Serve as the Load. It turns the electrical energy into light.</td>
</tr>
<tr>
<td>POWER CORD/PLUG</td>
<td> </td>
<td>Temporarily connects an appliance or an equipment to the mains electricity supply via wall socket or an extension cord.</td>
</tr>
<tr>
<td>SWITCHES</td>
<td> </td>
<td>Necessary to turn the electrical circuit “on” or “off”</td>
</tr>
<tr>
<td>CONNECTING WIRES</td>
<td> </td>
<td>To create a complete circuit path through which current flow from the source going to the circuit load.</td>
</tr>
<tr>
<td>TRANSFORMER</td>
<td> </td>
<td>Protection of appliance and equipment connected to AC power supplies. It can change the electrical voltage or current from one level to another</td>
</tr>
</tbody>
</table>
BASIC COMPONENTS TESTING
PHYSICAL APPEARANCE OF GOOD AND BLOWN FUSE

- A Good Fuse
- Slight Burnt
- Discolored means a major short circuit in the equipment
MULTIMETER INDICATION FOR GOOD AND BLOWN FUSE

GOOD

BLOWN
Using the continuity test function of the multimeter

If a conductive path is formed, the multimeter will beep.

If the conductive path is broken, the multimeter will not beep.
BULB/LAMP

PHYSICAL APPEARANCE OF BUSTED OR BURNT OUT BULB

Busted Bulb – Infinite Resistance (OPEN), no continuity.

Good Bulb – Low Resistance but not zero.
SWITCH

• “ON” – multimeter reading must indicate continuity.

• “OFF” – multimeter reading must indicate no continuity.
METER INDICATION FOR TESTING A GOOD TRANSFORMER

PRIMARY WINDING

SECONDARY WINDING

Meter Deflection Indicating High Resistance

Meter Deflection Indicating Low Resistance
METER INDICATION FOR TESTING A BAD/DEFECTIVE TRANSFORMER

Shorted

- Meter Deflection Indicating Zero Resistance

Open

- No Meter Deflection Indicating Infinite Resistance
RESISTOR

Good Resistor

- **Measured Value** is within the range of the **Rated Value**.
- **Measured Value** – using an **Ohmmeter** or a **Multimeter**
- **Rated Value** – determining the Resistance of the Resistor thru **RESISTOR COLOR CODING**
Bad/Defective Resistor

• **Open** – meter deflection indicates **INFINITE** resistance reading.

• **Shorted** – meter deflection indicates **ZERO** resistance reading.

• **Change Value** – rare defect of resistor; measured value is not within the range of the rated value.

Physical appearance of bad/defective resistor
ACTIVITY 1.1: FUSE, BULB AND SWITCH TESTING
ACTIVITY 1.3
PROPER JOINING or SPLICING
CIRCUIT COMPONENTS

1. Source
2. Switch
3. Connecting Wires
4. Load
1. SERIES CONNECTION

- Bulb or lamps (known as the load) are arranged in chain.
- Circuit current has only one path to take. Current flowing through each resistor is the same.
- Total circuit resistance is found by simply adding up the resistance values of the individual loads.
- Total voltage and power is divided accordingly through the loads.
2. PARALLEL CONNECTION

- Loads are arranged such that two electrically common endpoints are created.
- Total circuit current is divided accordingly through each parallel branch.
- Total resistance is found by adding up the reciprocals of the resistance values, and then taking the reciprocal of the total.
- Voltage in each parallel branch is the same as the source voltage.
<table>
<thead>
<tr>
<th>SERIES CIRCUIT</th>
<th>Electrical Parameter</th>
<th>PARALLEL CIRCUIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 + R2 + R3</td>
<td>Total Resistance (R_T)</td>
<td>$\frac{1}{\frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3}}$ <Smallest Resistance</td>
</tr>
<tr>
<td>$> R's$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>Total Current (I_T)</td>
<td>Sum of the currents in each branch</td>
</tr>
<tr>
<td>Sum of all Voltage Drop</td>
<td>Total Voltage (V_T)</td>
<td>Constant</td>
</tr>
<tr>
<td>V_TI_T</td>
<td>Total Power (P_T)</td>
<td>V_TI_T</td>
</tr>
</tbody>
</table>
SERIES CONNECTION

WHAT WILL HAPPEN IF ONE BULB BURNS OUT???
WHAT WILL HAPPEN IF ONE BULB BURNS OUT?

NONE OF THE BULBS WOULD LIGHT UP...
PARALLEL CONNECTION

WHAT WILL HAPPEN IF ONE BULB BURNS OUT???
WHAT WILL HAPPEN IF ONE BULB BURNS OUT?

REMAINING BULBS WOULD LIGHT UP...
ACTIVITY 2
CIRCUIT CONNECTION

1. SERIES CONNECTION
ACTIVITY 2
CIRCUIT CONNECTION

2. PARALLEL CONNECTION
POWER SUPPLY UNIT

• Block Diagram

- AC Source
- Transformer
- Rectifier Circuit
- Smoothing Capacitor Circuit
- Regulator Circuit
- Load

• Circuit Diagram
TROUBLESHOOTING & REPAIR PROCEDURES
SAFETY CONCERNS:

• Contact professionals and qualified servicemen for equipment that poses risk.
• Proper tools are a must.
• Instruments must be well-maintained and correctly calibrated.
• Most low-voltage electrocutions are the result of the failure to lock out, disconnect or isolate power.
• Use insulated gloves and tools.
• Use GFCIs. (Ground Fault Circuit Interrupter)
MAIN CONCERN

The effective & efficient working condition of a certain laboratory equipment depends on the following four features:

• Maintenance
• Servicing
• Troubleshooting
• Repair
MAINTENANCE

- Maintenance is a continuous process.
- Must include both the Hardware and the Software.
 - **Hardware:**
 - Cleaning/Dusting
 - Maintaining prescribe levels of parameters such as electrical, environmental, and others.
 - **Software:**
 - Reinstallation/Uninstallation
 - Upgrade
SERVICING

• Mainly associated with the hardware parts of the equipment.

• It Includes:
 • Check-ups,
 • Repairs, and
 • Updating of all physical components
SERVICING

STEPS:

1. Uninstall all physical components starting from power connections.
2. Clean dust from the components.
3. Perform a visual check or electronic check as required.
4. Reinstall all components carefully and properly.
5. Check for loose wiring or crack cables.

6. Check if any jumper is missing, if required replace it with a new one.

7. Check for physical damages of peripherals and replace them if needed.

8. Tighten all internal and external connections.

9. Switch on the power supply and observe.
TROUBLESHOOTING

• Detection and rectification of faults in the equipment.

REPAIRING

Repairing means to rectify the problem in the hardware or software.

It is an essential part of troubleshooting.

Repairing may also include replacement of a component.
SIX-STEP PROCEDURE

• A standardized approach toward electronic troubleshooting and maintenance:
SYMPTOM RECOGNITION

• Determine if the equipment is functioning as design.
• A trouble symptom is an indicator of malfunction.
• Use your senses of SIGHT and HEARING.
SYMPTOM ELABORATION

• What fault is probably causing the specific symptoms?
• Symptom elaboration requires an evaluation of all observed displays.
• Indications must be evaluated in relation to each other as well as the overall operation.
• Record information observed! For example: How did each control affect an associated meter or other indicator?
• “Think” about the information before jumping to a conclusion
LISTING PROBABLE FAULTY FUNCTIONS

• Dividing the equipment into functional areas can save numerous trouble shooting steps.

• Use FUNCTIONAL BLOCK DIAGRAM (FBD)

 FBD shows the functional areas of an equipment, as well the detailed functions, levels of input and output parameters (voltage and current).
LOCALIZING THE FAULTY FUNCTION

* Isolating the functional area that has an indication of *malfuction*.

* Knowledge, skill, and proper test equipment should now be used to isolate the faulty functional area.
LOCALIZING THE TROUBLE TO THE CIRCUIT

• Isolating the circuits within the faulty unit.
• More extensive troubleshooting is now required within the identified faulty unit.
• Look for improper voltages, improper waveforms, obvious component overheating.
• Isolate the defective circuit group.
FAILURE ANALYSIS

• **Steps 1 and 2** were used to **recognize, verify, and obtain descriptive information**

• **Step 3** allowed you to **make a logical selection** of the logical faulty unit

• **Step 4** provided for simple input-output **tests and localized the faulty functions**

• **Step 5** **localized the fault to the circuit** within the faulty unit

• **Step 6** will involve the **actual replacement or repair of faulty circuit components**