Department of Applied Sciences
Course Description of Science OND Program
(Biology Specialization)

SEMESTER 1
(YEAR 1)

ENLS110
English I

Credit Hours: 3
Theoretical Hours: 3
Practical Hours: 0
Contact Hours/Week: 3

Course Description: This writing course is for students of Science at a level. It aims at developing the student’s ability to understand and write in clear and correct language the various types of concepts common to all scientific work.

On completion of this unit, students will be able:
To obtain information from diagrams and tables; skim and scan a text for general information; transfer information from text to diagrams and tables; read the text to identify further details of context; guess the meaning of new words from the context; get the gist of a text and distinguish and identify main points from supporting details.

To display a clear style of handwriting; use conventions of style and grammar; use specialized/appropriate vocabulary accurately; write a set of clear instructions; write a description of a diagram or a table; write a simple paragraph; write an experiment; write a simple report; write a lab report and use diagrams in description.

To give information on diagrams and tables; describe an event or process; explain a procedure; give a set of instructions; explain a simple experiment; compare tables; describe how something works using diagrams and give technical specifications

To follow straightforward instructions; to identify stages of a process or event and listen for specific information
MATS110
Mathematics I

Credit Hours:	3
Theoretical Hours:	3
Practical Hours:	0
Contact Hours/Week:	3

Course Description: The course should enable the student to:
- Understand the basic Technical Mathematics like, Quadratic Equations.
- Understand and apply awareness in the field of Science like Growth and Decay
- Understand and apply oriented topics like, Differentiation and Integration in the field of Laboratory Science

COMS 110
Information Technology I

Credit Hours:	1
Theoretical Hours:	0
Practical Hours:	2
Contact Hours/Week:	2

Course Description: This course enables students to utilize the appropriate technology to effectively perform variety of tasks. It focuses on the internet, email system and the techniques of designing presentations using Microsoft PowerPoint. The students should be able to:
- Discuss the basic concepts and fundamentals of Information Technology.
- Explore to the functions of various hardware and software components of a computer.
- Distinguish system from application software/s.
- Define common networking terms from LAN and WAN technologies
- Explain the theory behind network technologies, protocols and standards.
- Discuss the software license agreement, privacy and security issues.
- Discuss internet principles and World Wide Web concepts.
- Discuss how to create and work with electronic mail.
- Demonstrate the common commands and functions of PowerPoint in a variety of applications and appreciate the benefits of technology.

SCIG110
Biology I/A

Credit Hours:	3
Theoretical Hours:	3
Practical Hours:	0
Contact Hours/Week:	3
Course Description: The aim of the unit is to provide students with basic knowledge on:
- The characteristics of living organisms
- Basic structure and function of plant cells and animal cells,
- Comparison between plant and animal cells in terms of structure and function,
- How substances get in & out of cells,
- Growth
- Structure and function of plant and animal tissues,
- Basic methods of transportation of substances across cell membranes,
- Nutrition
- Digestion in man

<table>
<thead>
<tr>
<th>SCIG 120</th>
<th>Chemistry I/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit Hours:</td>
<td>3</td>
</tr>
<tr>
<td>Theoretical Hours:</td>
<td>3</td>
</tr>
<tr>
<td>Practical Hours:</td>
<td>0</td>
</tr>
<tr>
<td>Contact Hours/Week:</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Description: In this unit the student should be able to:
- Explain the nature of elements, compounds and mixtures and their separation,
- Use particle theory to explain changes in the states of matter,
- Describe the composition of air and some reactions of oxygen, water and hydrogen,
- Explain solubility and use the solubility curve to determine solubility of salts at different temperatures,
- Use symbols, formulae and apply mole concept to express concentrations and for chemical calculations,
- Describe and use dot/cross diagrams to sketch atomic structure,
- Describe different types of bonds and understand how to relate properties of substances to their structures.

<table>
<thead>
<tr>
<th>SCIG 130</th>
<th>Physics I/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit Hours:</td>
<td>3</td>
</tr>
<tr>
<td>Theoretical Hours:</td>
<td>3</td>
</tr>
<tr>
<td>Practical Hours:</td>
<td>0</td>
</tr>
<tr>
<td>Contact Hours/Week:</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Description: In this unit students will:
- Study distance, time, velocity and acceleration
- Study force and energy
- Study Newton's laws of motion, power
- Describe wave motion, reflection and refraction of waves
- Investigate lens equation and image formation
- Explain electric charge and its properties
- Investigate basic properties of magnetism and electromagnetism
- Investigate effects of electric current
- Explain current, potential difference and resistance
SCIG 141
Laboratory Techniques I

Credit Hours: 2
Theoretical Hours: 0
Practical Hours: 6
Contact Hours/Week: 6

Course Description :

A. Biology
In this unit the students will:
- Describe the use of the optical compound microscope,
- Explain the importance of the care of the slides,
- Describe simple techniques of preparing slides,
- Extend knowledge and application of microscopical techniques,
- Practice staining technique.

B. Chemistry
- Prepare a suspension and separate the solid by filtration processes,
- Apply centrifuge technique to separate suspensions,
- Apply crystallization and recrystallisation techniques to purify organic compounds,
- Study and apply different methods to determine the melting point of organic compounds,
- Study the basic techniques and principles of volumetric analysis and apply to acid-base titrations,
- Study and apply paper chromatography to separate colored pigments.

C. Physics
- Use equipment for measuring length, mass, time and temperature.
- Calculate area and volume,
- Define and perform measurements associated with density,
- Electricity, current and the use of meters to measure current and voltage.
ENLS210
English II

Credit Hours: 3
Theoretical Hours: 3
Practical Hours: 0
Contact Hours/Week: 3

Course Description: This writing course is for students of science at certificate level. It aims at developing the students’ ability to understand and write in clear and correct language the various types of concepts common to scientific work.

On completion of this unit, students will be able:
To read for detailed information; get the gist of a text; distinguish and identify main points from supporting details; obtain information from diagrams and tables; skim and scan a text for general information; transfer information from text to diagrams and tables and deduce meaning of new words from context.

To write a description of a diagram or a table; write about cause and effect; write a description of a process; write a simple paragraph using specialized vocabulary accurately; write about similarities and differences; take notes and write a summary.

To give information on diagrams and tables; describe an event or a process; describe diagrams; give reasons and justifications; hold a discussion on different scientific topics; compare and contrast things; explain a procedure; give technical specifications and give an oral summary.

To listen to order information; to identify stages of a process or event; listen for specific information and listen to take notes.

MATS210
Mathematics II

Credit Hours: 3
Theoretical Hours: 3
Practical Hours: 0
Contact Hours/Week: 3

Course Description: The course should enable the student to:
- Develop the skills and knowledge to classify, record, display data
- Summarize scientific data using measures of central tendency, measures of dispersion & skewness.
- Understand the basic statistical concepts of probability
- Understand the basics of continuous probability distributions and the basics applications of the normal distribution in science.
- Have understanding of the statistical techniques, of correlation and regression analysis.

COMS210
Information Technology II

Credit Hours: 1
Theoretical Hours: 0
Practical Hours: 2
Contact Hours/Week: 2

Course Description: This course enables the students to:
- Demonstrate understanding on the importance of database in the different aspects of society;
- Explore any database tool to design and develop databases; and
- Design and develop database systems using the tool.
The students should be able to:
Discuss the basic concepts of database; Design tables using fields with correct data types; Navigate the different database operations; Create relationships between tables; Create queries of different conditional statements using tables; Design simple forms in different ways; and Generate properly designed reports.

SCIG 210
Biology I/B

Credit Hours: 3
Theoretical Hours: 3
Practical Hours: 0
Contact Hours/Week: 3

Course Description: In this unit, the students are acquainted with:
- Photosynthesis in green plants,
- Respiration.
- Transport system in plants and animals,
- The structure and function of the circulatory systems in mammals, lymphatic system
- Excretion in mammals and the role of the kidney in the process,
- Osmo-regulation in plants and animals,
- Role of the nervous system in communication and coordination,
- The nature and role of hormones,
- Growth and cell division,
- The principles of asexual reproduction,
- Types, advantages and disadvantages of asexual reproduction,
- The principles of sexual reproduction.
- Structure of flower and fertilization

SCIG 220
Chemistry I/B

Credit Hours: 3
Theoretical Hours: 3
Practical Hours: 0
Contact Hours/Week: 3

Course Description: In this unit the student will:
- Study the properties and reactions of acids, bases and salts,
- Explain oxidation and reduction in terms of electron transfer,
- Study electrolysis and its simple effects and understand its role in an oxidation/reduction process,
- Describe the trends in the redox properties of metals and their compounds,
- Explain the factors that affect the rates of chemical reactions,
- Study the structure and reactions of some carbon compounds.

SCIG 230
Physics I/B

Credit Hours: 3
Theoretical Hours: 3
Practical Hours: 0
Contact Hours/Week: 3

Course Description: In this unit a student should be able to:
- Describe coplanar forces and solve problems involving forces,
- Study the principles of fluid pressure,
- Study about series and parallel circuits and describe the factors which affect resistance,
- Describe power in electrical circuits,
- Understand the concept of heat and temperature,
- Study about specific latent heat and specific heat capacity,
- Describe the properties of materials.

SCIG 241
Laboratory Techniques II

Credit Hours: 2
Theoretical Hours: 0
Practical Hours: 6
Contact Hours/Week: 6

Course Description:

A. Biology
In this unit the students will employ qualitative and quantitative methods to analyze food contents,
Describe and explain the principles involved in the isolation and culturing of microorganisms.

B. Chemistry
Study the general principles of potentiometry and apply these to potentiometric titrations of acids and bases,
Apply redox titrations to different chemical analysis,
Study the basic principles and uses of some distillation techniques,
Study the principles of chromatographic techniques and apply these for qualitative separations.

C. Physics
A student should be able to:
- Understand resistance codes and measure resistance using multi-meters,
- Use potentiometer and bridge circuits,
- Use the cathode ray oscilloscope,
- Describe the principles of high and low pressure techniques,
- Understand the properties and construction of capacitors,
- Understand radioactivity,
- Use low and high resistance meters.
ENLS310
English III

Credit Hours: 3
Theoretical Hours: 3
Practical Hours: 0
Contact Hours/Week: 3

Course Description: On completion of this unit, students will be able:
To read for detailed information; get the gist of a text; distinguish and identify main points from supporting details; obtain information from diagrams and tables; skim and scan a text for general information; transfer information from text to diagrams and tables; deduce meaning of new words from context.
To write a description of a diagram or a table; write about cause and effect; write a description of a process; write a simple paragraph using specialized vocabulary accurately; write about similarities and differences; take notes and write a summary.
To give information on diagrams and tables; describe an event or a process; describe diagrams; give reasons and justifications; hold a discussion on different scientific topics; compare and contrast things; explain a procedure; give technical specifications and give an oral summary.
To Listen to order information; to identify stages of a process or event; listen for specific information and listen to take notes.

SCIB 310
Cell Biology

Credit Hours: 4
Theoretical Hours: 3
Practical Hours: 2
Contact Hours/Week: 5
Course Description: In this unit, the students will study:
- The components of cells and their role;
- Cell growth;
- Cell divisions-mitosis and meiosis;
- Heredity and its application;
- Genetic variation in populations.

SCIB 320
Chemistry II/A

Credit Hours: 3
Theoretical Hours: 3
Practical Hours: 0
Contact Hours/Week: 3

Course Description: In this unit the students will be able to:
- Understand the fundamental chemistry concepts including the use of the concept of enthalpy change, ΔH;
- Factors governing the shape of simple molecules;
- Nature of intermolecular forces of attraction;
- Nature of lattice structure and its relation to physical properties; Calculation related to $[H^+(aq)], pH, K_w, K_b, or pK_a$;
- Mode of actions of buffer solutions;
- Learn concept of the homologous series, range of reactions of functional groups in organic molecules and cyclic hydrocarbons;
- Study classification of colloidal systems and their physical properties.

SCIB 330
Instrumentation

Credit Hours: 3
Theoretical Hours: 2
Practical Hours: 2
Contact Hours/Week: 4

Course Description: A student should be able to:
- Describe potential hazards associated with electrical equipment,
- Appreciate the effects of environmental factors on particular equipment and take measures to maintain it in good condition,
- Test individual electronic components to see if they are working,
- Perform soldering techniques safely and competently,
- Understand the different types of measuring systems,
- Understand the function transducers,
- Ensure that students can undertake routine maintenance strategies, undertake fault diagnosis,
- Ensure the maintenance of different laboratory equipment,
- Describe different types of electrochemical cells and compile a maintenance programme for all electrodes,
- Use different measurement systems.
- The function of transducers;
- Number of measurement systems;
- Routine maintenance.

SCIB 340
Analytical Techniques

Credit Hours: 3
Theoretical Hours: 1
Practical Hours: 4
Contact Hours/Week: 5

Course Description: In this unit, students will study the principles and use of:
- Ion-exchange resins;
- Electrophoresis;
- Column chromatography;
- Gas/liquid chromatography;
- Visible/UV and IR absorption spectrophotometry;
- Flame photometry;
- Colorimetry;
- Polarimetry;
- Atomic absorption spectrophotometry.

SCIB 350
Microbiology Techniques III

Credit Hours: 2
Theoretical Hours: 1
Practical Hours: 2
Contact Hours/Week: 3

Course Description: This practical course will enable students to:
- Learn culturing microorganisms;
- Observe microorganisms and do biochemical tests;
- Estimate microbial population;
- Study the effect of antibiotics and UV on growth of bacteria;
- Harmful microorganisms;
- Detect bacteria in water samples;
- Investigate the effect of pasteurization on food substances;
- Do microbiological examination of food;
- Learn culturing and identifying molds.
ENLS 410
English IV

<table>
<thead>
<tr>
<th>Credit Hours:</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Hours:</td>
<td>3</td>
</tr>
<tr>
<td>Practical Hours:</td>
<td>0</td>
</tr>
<tr>
<td>Contact Hours/Week:</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Description: By the end of Semester four the students will be able to:
- read for a specific purpose/information – Scan
- read for detailed information
- read for general information – skim
- make inferences
- give justifications
- sequence information
- guess words in context
- distinguish facts from opinion
- make predictions
- comprehend physical, chemical and functional description

SCIG 410
Safety, Laboratory Organization and Management

<table>
<thead>
<tr>
<th>Credit Hours:</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Hours:</td>
<td>1</td>
</tr>
<tr>
<td>Practical Hours:</td>
<td>0</td>
</tr>
<tr>
<td>Contact Hours/Week:</td>
<td>2</td>
</tr>
</tbody>
</table>

Course Description: In this unit the students will:
- Study the general safety rules associated with science laboratories,
- Explain the basic precautions to prevent fire and action to be taken in the event of fire,
- Study the hazards associated with electrical equipment and radiation materials,
- Study the hazards during handling chemicals and glassware,
- Study the hazards associated with handling biological materials,
- Analyze the role of the technician in laboratory lay-out and design,
- Compare the systems of purchasing and financial control,
- Explain the organization and management of the laboratory stores,
- Describe the basic principles of laboratory administration,
- Study the principles of maintenance of laboratories and equipment.
SCIB 420
Biochemistry

Credit Hours: 4
Theoretical Hours: 3
Practical Hours: 2
Contact Hours/Week: 5

Course Description: In this unit the student will learn about:
- Three dimensional nature of organic molecules and associate this with specific binding;
- The structure, properties, functions and metabolism of carbohydrates;
- The structure, properties, and biological function of lipids and outline of metabolism of triglycerides and fatty acids;
- The structure, properties and biological functions of amino acids and proteins;
- The nature and metabolic function of enzymes;
- The structure, replication and biological functions of nucleic acids.

SCIB 430
Mammalian Physiology

Credit Hours: 4
Theoretical Hours: 3
Practical Hours: 2
Contact Hours/Week: 5

Course Description: In this unit, students will study a mammal's:
- Blood, lymph and tissue fluid;
- Nutrition and diet;
- Ventilation and respiration;
- Homeostasis;
- Endocrine;
- Renal function and ionic regulation;
- Sensitivity, coordination and response;
- Reproduction.

SCIB 440
Biology Techniques IV

Credit Hours: 2
Theoretical Hours: 1
Practical Hours: 2
Contact Hours/Week: 3

Course Description: This practical unit will enable students to learn:
- Dissection skills;
- Conditions necessary for health of common laboratory animals;
- Hazards associated with keeping laboratory animals;
- Avoidance of unnecessary suffering among laboratory animals;
- Care and propagation of plants;
- Sampling and collection of materials;
- Care and preservation of specimen.

SCIB 450
Project

Credit Hours: 3
Theoretical Hours: 0
Practical Hours: 6
Contact Hours/Week: 6

Course Description: In this unit, the students will be able to:
- Conceive a practical-based project topic for investigation and take full responsibility from initiation to completion;
- Plan and organize the project;
- Define the aims and objectives of the project;
- Search through materials related to the project;
- Formulate a scheme of investigation;
- Create an environment which will enable them to build upon practical skills acquired in other units;
- Develop interrelationship between the more formal disciplines in other units in the course;
- Design, modify or improve experiments relevant to the investigation;
- Interpret and relate the observations to the objectives of the project;
- Discuss the validity and significance of results and observations;
- Broaden experience and develop sense of responsibility and self-assurance;
- Apply mathematical concepts;
- Use application of IT in presenting projects;
- Develop the command of language and present a project effectively;
- Evaluate their project work;
- Communicate effectively with other people orally;
- Defend their project.